
Following the Usage, Not the Request:
Risk-Aware Task Scheduling with Overbooking in

Edge Clouds
Tie Ma1, Shan Zhang2*, Xiaoyu Zhang3, Zichuan Zheng1, Zhiyuan Wang2, and Hongbin Luo2

1School of Computer Science and Engineering, Beihang University, Beijing, China
2School of Cyber Science and Technology, Beihang University, Beijing, China

3Shen Yuan Honors College, Beihang University, Beijing, China

Abstract—Edge computing platforms are increasingly deployed
to support delay-sensitive and resource-intensive applications.
However, current task scheduling strategies, which rely on
user-requested resources, often lead to low resource utilization
and reduced platform profit due to users’ tendency to over-
request resources. Overbooking, widely adopted in industries
such as airlines and hotels, can improve utilization but introduce
risk under uncertain task resource usage. This paper applies
resource overbooking to edge clouds, focusing on task scheduling
optimization under uncertainty. We formulate the problem as
a stochastic mixed integer program, which is proven to be
NP-hard. To this end, a risk evaluation scheme is proposed
to accurately quantify the risk of overload without assuming
specific resource usage distributions, which has an additive error
guarantee. Based on this scheme, we transform the problem into
a more deterministic form and prove that the objective function
is submodular. This enables us to design a greedy algorithm that
achieves a (1− 1/e)-approximation ratio with lower complexity.
Extensive experiments on a real-world dataset demonstrate that
the proposed algorithm significantly improves profit by 0.23×-
3.35× and resource utilization by 0.16×-0.75× while accurately
controlling the risk associated with overbooking.

I. INTRODUCTION

A. Background and Motivation

We have witnessed the growing popularity of edge comput-
ing platforms, which enable users to run delay-sensitive and
resource-intensive applications from the edge of the networks.
The providers (e.g., Google [1], Amazon [2], and Alibaba [3])
of these platforms build a geographically distributed and
massive infrastructure, setting up hundreds of edge nodes and
connecting them via the backhaul network.

Edge computing platforms have matured into an operational
paradigm that appears straightforward from the user’s perspec-
tive: users simply submit tasks with a requested amount of
resources to a nearby edge node, and the platform promptly
returns the results. However, the underlying complexity is sig-
nificant from the platform’s standpoint. Strategic task schedul-
ing is a critical issue to optimize key objectives (e.g., profit,
resource utilization) with a resource pool shared among users.

This work was supported in part by the National Key R&D Program
of China under Grant 2022YFB4501000, in part by the Nature Science
Foundation of China under Grant 624B2015, 62422201, 62271019, 62225201,
U24B20128, in part by the Fundamental Research Funds for the Central
Universities, China, and State Key Laboratory of Complex & Critical Software
Environment. Corresponding author: Shan Zhang.

(a) Alibaba Dataset (b) Google Dataset

Fig. 1. Gap analysis between requested and actual resource usage. The
analysis is conducted based on the prototype from [4].

While intuitively assigning tasks to the nearest edge node
can reduce execution latency, this naive approach may result
in resource hotspots or even task failures if the local node
lacks sufficient resources. Consequently, it is imperative for
the platform to make task scheduling decisions in a holistic
and adaptive manner.

The above paradigm is typically based on the resources
requested by users [5], rather than their actual resource
usage. However, a substantial gap exists between the resource
requested and the resource usage in practice. For instance,
our analysis of two real-world datasets from Alibaba [4] and
Google [6] reveals that only 43% and 48% of the requested
CPU resources are actually consumed, respectively, as shown
in Fig. 1. This gap is primarily due to the difficulty users
face in accurately estimating their resource needs, leading
them to routinely over-request resources [7]–[9]. As a result,
production clusters such as those at Google suffer from a
low CPU utilization ranging from 20% to 35% [10]. This
underutilization not only reduces the platform’s profit but also
forces more user tasks to be offloaded to other remote clouds,
leading to increased latency and operational costs.

To address similar challenges, various commercial sectors,
such as hotels [11] and airlines [12], adopt overbooking to
sell more resources than are available, thereby improving their
resource utilization. For example, airlines routinely overbook
flights to compensate for passenger no-shows, thereby max-
imizing profit and maintaining high seat utilization; without
overbooking, more than 15% of seats may remain empty,
resulting in substantial economic losses [13], [14]. This mo-
tivates us to apply overbooking to the edge clouds. However,
overbooking also introduces risk. If an edge node becomes

overloaded, tasks may miss their deadlines, and the platform’s
profit can decline. Controlling this risk is challenging, as task
resource usage is inherently uncertain and only the historical
distributions are available prior to scheduling. This leads to
the first key question in this paper:

Q1. How to quantify and control the risk (with uncertainty
characteristics) incurred by overbooking?

One feasible way is to design a trading mechanism between
users and the platform based on contract theory (e.g. [14]–
[18]). However, this approach ignores the uncertainty of the
resource usage and only considers the no-show scenario,
which means the users may request the resources but do not
execute their tasks. This coarse-grained method often leads to
suboptimal resource utilization in practice.

A natural idea to tackle the uncertainty is to quantify and
analyze the probability of overloading with respect to the
overbooking strategies. However, this quantification is non-
trivial, as it involves complex convolution operations and
cannot express the risk in a closed form. In fact, even com-
puting the exact overload probability for a given task set on a
given edge node is NP-hard [19]. Only in special cases, such
as when task resource usage follows a specific distribution
(e.g., Normal distribution), can the overload probability be
computed efficiently. Following such a design philosophy,
many existing studies (e.g., [20], [21]) simplify the problem
under the assumption that the resource usage of tasks follows a
specific distribution. However, the resource usage of different
tasks may present distinct features in practice, and we cannot
always obtain the explicit-form overloading probability. This
leads to our second key question in this paper:

Q2. How to achieve a performance-guaranteed task schedul-
ing without assuming specific resource usage distributions?

Wu et al. [22] leverages the Γ-robustness theory to address
this challenge, which still relies on the assumption that the dis-
tribution follows a symmetric feature. Recently, learning-based
approaches (e.g., [23]) have been proposed to address the im-
plicit distribution challenge; however, they lack interpretability
and a theoretical guarantee. The overloading risk cannot be
concisely captured based on each task’s resource usage, posing
a significant challenge to designing performance-guaranteed
scheduling algorithms. Moreover, the constraints introduced by
the spatial cooperation among edge nodes further complicate
the problem. To the best of our knowledge, Q2 remains an
open challenge in the existing literature.

B. Main Results and Key Contributions

This paper investigates the resource overbooking problem
in edge clouds, with a focus on task scheduling optimization.
Specifically, users submit tasks to a shared resource pool, and
the platform must schedule these tasks based on the current
status of edge node capacities and inter-node transmission
costs. In practice, task resource usage is uncertain, and only
historical distributions are available. To maximize profit while

maintaining low risk, the platform must effectively address
this uncertainty.

Our main results and key contributions are as follows:
• Novel Problem Formulation: We study the task schedul-

ing problem in edge clouds with resource overbooking,
aiming to maximize the platform’s profit while con-
trolling the risk of resource overload. The problem is
formulated as a Stochastic Mixed Integer Programming
(SMIP) problem and proven to be NP-hard by reduction
from the classic multiple knapsack problem.

• Design of Risk Evaluation Scheme: With a properly con-
structed utility function, we transform the risk evaluation
problem into a high-dimensional space to decompose the
contribution of each task along individual dimensions
in an additive manner. Then, an Expected Utility-based
Risk Evaluation scheme (EURE) is proposed, which can
precisely quantify the risk of scheduling any task set on
a node with a slightly relaxed capacity. EURE provides
an additive error bound ϵ for any constant ϵ > 0, without
assuming specific distribution forms or features.

• Scheduling Algorithm Design: The EURE scheme en-
ables us to transform the original SMIP problem into
a more tractable deterministic form, whose objective
function is rigorously proved to be submodular. Building
on this theoretical foundation, we design a risk-aware task
scheduling algorithm that efficiently solves the problem
using a greedy approach. Our analysis shows the pro-
posed algorithm achieves a (1−1/e)-approximation ratio.

• Extensive Evaluation: Comprehensive experiments are
conducted based on real-world datasets, and the results
demonstrate that the proposed algorithm improves the
profit by 0.23×-3.35× over state-of-the-art approaches
while improving the resource utilization by 0.16×-0.75×.
Furthermore, simulations confirm the accuracy of our
algorithm in controlling the risk of resource overbooking.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section presents the system model and mathematical
formulation of the edge cloud resource overbooking problem.

A. Task Model

We consider a typical edge cloud scenario consisting of N
connected edge nodes denoted by N = {1, 2, · · · , n, · · · , N},
as shown in Fig. 2. Each edge node is equipped with a
certain amount of computing resource, denoted by Cn where
n ∈ N . Users generate and send requests to the nearest
edge nodes for potential computing services. Denote by R =
[R1, R2, · · · , RN] the number of requests received at each
edge node. The requests are of K types. A request of type-
k requires bk computing resources in booking, and yields a
revenue of pk if successfully served. The actual resource usage
is uncertain and can be modeled by a random variable uk fol-
lowing a known probability distribution. Generally, uk cannot
exceed rk according to practical business rules. In addition, the
resource usage of each request is considered to be independent.
Note that although we focus on computing resources, the

RequestedCapacity

Scheduling

Overbooking

?
Usage

Case 1:
Non-Overload

Uncertain
Task Usage

Case 2:
Overload

Task of Different TypesTask SubmissionPhysical Link Scheduling Decision

Resource Capacity of Node Resource Requested by Task Actual Resource Usage of Task

Fig. 2. System model overview.

model can be readily extended to other resource types during
task execution (e.g., memory and energy consumption).

B. Scheduling Model

Let xr,n,m indicates if the r-th request of node n is served
by node m or not, where r = 1, 2, · · · , Rn, n ∈ N and
m ∈ N . Specifically, the corresponding tasks will be served
in three cases: (1) routed to the remote cloud for service if∑

m∈N xr,n,m = 0, (2) served locally if xr,n,n = 1, and (3)
offloaded to other edge nodes if xr,n,m = 1 and m ̸= n. xr,n,m

directly influence the system costs. The third case introduces a
cooperation cost tr,n,m regarding the fronthaul transmissions.
We have tr,n,m = dr,nτn,m, where dr,n is the the size of
input/output data of r-th request at node n and dr,n is the
normalized transmission cost depending on the distance and
bandwidth conditions between nodes n and m.

An edge node becomes overload when its equipped re-
sources cannot meet the usage of all scheduled tasks. Let δn be
a 0-1 indicator to show if node n is overloaded. Specifically,
δn is given by:

δn =

1, if
∑

m∈N
∑Rm

r=1 xr,m,nukr,m

Cn
≤ 1,

0, if
∑

m∈N
∑Rm

r=1 xr,m,nukr,m

Cn
> 1,

(1)

where kr,m is the type of task corresponding to the r-th request
received at node m. Due to the limited budget of overload cost,
the platform needs to ensure that the probability of δn = 0 is
below a certain threshold ∆, i.e., Pr(δn = 1) ≤ ∆.

C. Problem Formulation

The profit of a scheduled task is its revenue minus its
cooperation cost. Our objective is to maximize the total profit
under the predefined overload risk constraints. The problem

TABLE I
LIST OF NOTATIONS

Symbol Definition
N Set of edge nodes
N Number of edge nodes
Cn Computing resource capacity of node n
Rn Number of requests received at node n
K Number of task types
kr,n Type of the r-th request at node n
pk Revenue of a type-k task
bk Requested resource demand of a type-k task
uk Actual resource usage of a type-k task

xr,n,m Binary scheduling variable indicating whether the r-th
request of node n is served by node m

tr,n,m Cooperation cost for serving the r-th request of node n
at node m

dr,n Size of input/output data of the r-th request at node n
τn,m Normalized transmission cost between nodes n and m
δn Binary indicator for whether node n is overloaded
∆ Threshold for overload probability constraint

can be formulated as the following Stochastic Mixed Integer
Program (SMIP):

(P1)max
∑
n∈N

∑
m∈N

Rn∑
r=1

xr,n,m(pkr,n
− tr,n,m)

s.t. xr,n,m ∈ {0, 1}, ∀r = 1, · · · , Rn, n ∈ N ,m ∈ N ,∑
m∈N

xr,n,m ≤ 1, ∀r = 1, · · · , Rn, n ∈ N ,

Pr(δn = 0) ≤ ∆, ∀n ∈ N .
(2)

The first constraint ensures that the task scheduling variables
are valid. The second constraint ensures that each task is
scheduled to at most one edge node. The last chance con-
straints realize the risk control at each edge node.

This problem is complex since the chance constraints in-
volve the sum of random variables, which requires convolution
operations and cannot be expressed in a closed form. More-
over, the problem remains NP-hard even when the values of
uk are deterministic, as shown in the following theorem.

Theorem 1. Problem (P1) is NP-hard.

Proof. Consider a subproblem of P1 obtained by treating
uk as deterministic constants rather than stochastic variables.
Then, the problem reduces to the classical 0-1 multi-knapsack
problem (MKP), where tasks are treated as items and edge
nodes as knapsacks. Since MKP is NP-hard and it is a
subproblem of P1, solving P1 is at least as hard as solving
the 0-1 multi-knapsack problem; hence, P1 is NP-hard. □

III. ALGORITHM DESIGN

In this section, we present the design of the proposed Risk-
aware Task Scheduling algorithm based on Submodularity
(RTSS) for solving the SMIP problem. The overall framework
is illustrated in Fig. 3. RTSS consists of two main components:
Risk Evaluation (§III-A) and Submodular Scheduling (§III-B).
The Risk Evaluation component quantifies the overload risk
of scheduling a given task set on a node. It transforms
the risk evaluation problem into a high-dimensional space,

X≈

Input

= 𝑒^(+ +⋯+)

Resource Capacity 𝐶

Usage Distributions

𝑈(1)

𝑈(2)⋯

Utility function 𝑓:

Problem Transformation

High Dimensional Space Calculation

X≈çOutput Approx. Overload Probability

Risk Evaluation Submodular Scheduling

In
pu

t Tasks Edge Nodes

Greedy Scheduling

Output Scheduling Decision 𝑥!,#,$

Task Sets ⋯

Feasible Sets ⋯

Greedy Selection

⋯ ⋯

𝑈(𝑄)

0 𝐶
1
𝑓 &𝑓

Relaxation

0 𝐶
1

𝐶+𝛾

'𝑔
Fourier Series

0 𝜉 3𝜉2𝜉

)𝑓
Scaling Back

0 𝐶 𝐶+𝛾
1

*𝑔
Periodization

0 𝜉 3𝜉2𝜉

𝑔
Scaling

0 𝜉

Exponential Sum Approximation

Original

=

𝔼 𝑓 ∑ ⋯𝑃𝑟 < 𝐶∑ ⋯

𝛾-Relaxation 𝜖-Approximation 𝔼[0𝑓()]∑ ⋯𝔼[𝑓()]∑ ⋯ ∑ ⋯𝔼[2𝑓()]

…+
1

+
𝐻

Exponential
Functions

…

1

𝐻

2 = 𝑒^(+ +⋯+)

= 𝑒^(+ +⋯+)

1

2

𝐻

1

2

𝐻

… …

1

2

𝐻

…

Feature
Vector

0 𝐶
1

1 − 𝔼[0𝑓()]∑ ⋯

⋯

⋯

First Fit

Lite Set Generation

Fig. 3. Overview of the RTSS algorithm.

where each task’s contribution to the overload probability
can be decomposed into an additive form. The Submodular
Scheduling component leverages the Risk Evaluation results
to reformulate the original SMIP problem into a tractable form
that can be efficiently solved using submodular optimization
techniques. We provide a rigorous theoretical analysis of the
performance guarantees of both components.

A. Expected Utility-based Risk Evaluation

The overload constraints pose a significant challenge in
problem (P1), as they involve inherent uncertainty and require
computationally complex convolution operations. To address
this constraint, we focus on the following fundamental ques-
tion in this subsection: Given a set of tasks and an edge node,
how to evaluate the risk of exceeding the resource capacity if
the task set is scheduled to the node?

Inspired by signal processing techniques that transform time
domain convolution operations into frequency-domain multi-
plication operations, our key idea is to leverage expected utility
theory [24], [25] to transform the risk evaluation problem into
a high-dimensional space and decompose the resource usage
of each task in this space.

We introduce some notations to simplify the presenta-
tion in this subsection. Denote by the task set as Q =
{1, 2, · · · , q, · · · , Q}, where Q represents the total number of
tasks to schedule. We denote the resource usage of task q as
U(q) and the aggregate resource usage of task set Q as U(Q).
Let C denote the resource capacity of the edge node.

We first construct a utility function f :

f(U(Q)) =

{
1, U(Q) ∈ [0, C],

0, U(Q) > C,
(3)

whose expected value equals to the non-overload probability
of the edge node, i.e. E[f(U(Q))] = Pr(U(Q) ≤ C).

The following lemma motivates us to use a series of
exponential functions to approximate the utility function f ,
whereby the impact of each task can be decomposed.

Lemma 1. If a utility function f̃ is defined as a sum of
exponential functions, i.e., f̃(U(Q)) =

∑H
i=1 lib

U(Q)
i , where

H is the number of terms, li is the coefficient, and bi is the
base, then the expected value of f̃(U(Q)) can be expressed
as follows:

E[f̃(U(Q))] =
H∑
i=1

lie
∑

q∈Q log E[bU(q)
i]. (4)

Proof. For each exponential function b
U(Q)
i , we have:

E[bU(Q)
i] = E[b

∑
q∈Q U(q)

i] = E

∏
q∈Q

b
U(q)
i

 =
∏
q∈Q

E[bU(q)
i].

(5)
By taking the logarithm of both sides, we have:

logE[bU(Q)
i] =

∑
q∈Q

logE[bU(q)
i]. (6)

Combine Eq. (5) and Eq. (6), we can rewrite E[f̃(U(Q))]
as follows:

E[f̃(U(Q))] = E[
H∑
i=1

lib
U(Q)
i] =

H∑
i=1

lie
∑

q∈Q log E[bU(q)
i]. (7)

Lemma 1 motivates us to utilize Fourier series to ap-
proximate the utility function f . However, the Fourier series
should apply to periodic functions, while the expectation of
the periodic version of f is not equivalent to Pr(U(Q) ≤ C)
anymore. To bridge this gap, we employ a scaling and scaling
back approach as [24], based on the key insight that the
exponential function maintains large values even for small
arguments. Specifically, we first multiply the utility function
by an exponential term to scale up, then shift the resulting
product within its domain of definition to construct a periodic

Algorithm 1: Expected Utility-based Risk Evaluation
(EURE)

Input: A task set Q, the resource capacity C of a
edge node;

Output: Overload probability if Q is scheduled to the
edge node

1 Step 1: Feature Vector Calculation
2 Calculate the feature vector vq of each task according

to Eq. (9);
3 Step 2: Summation
4 Initialize the sum of feature vector V = 0;
5 for each task q in Q do
6 V← V + vq;

7 Step 3: Risk Evaluation
8 Calculate the overload probability based on Eq. (4);

function. After performing the Fourier series approximation
on this periodic function, we divide the result by the original
exponential multiplier to scale back. As such, the utility func-
tion is restored to its original form within the desired domain,
while the contributions from shifted regions become negligible
due to division by exponentially large values. This transform
technique effectively enables Fourier series approximation
of the utility function while preserving the approximately
equivalence to the original problem Pr(U(Q) ≤ C).

As illustrated in the lower left corner of Fig. 3, this
transformation process consists of the following five steps:
i) Relaxation: To constrain the number of terms in the Fourier
series, we slightly relax the utility function f into f̂ given by:

f̂(U(Q)) =


1, |U(Q)| ∈ [0, C],

−|U(Q)|
γ

+
C

γ
+ 1, |U(Q)| ∈ [C,C + γ],

0, |U(Q)| > C + γ,
(8)

where γ > 0 is an arbitrary positive constant. This step
turns the problem into a relaxed version, i.e., Pr(U(Q) ≤
C + γ), which is close to the original problem and easy to
handle, but introduces a small additive error γ. Note that
only the nonnegative part of U(Q) impacts the final result,
and f̂(U(Q)) can take other forms that satisfy the α-Hölder
condition [24]. ii) Scaling: We transform f̂(U(Q)) into a
scaled version g(U(Q)) = ηU(Q)f̂(U(Q)) in the domain
U(Q) ∈ [−ξ, ξ], where ξ and η are constants that can be
set according to [24]. iii) Periodization: We then construct
a periodic function ĝ(U(Q)) by replicating the scaled func-
tion g(U(Q)) defined on [−ξ, ξ] across adjacent intervals.
iv) Fourier series: By applying Fourier series to ĝ, we get
g̃(U(Q)) =

∑H
i=1 liϕ

U(Q)
i , where H is the number of basis

functions, ϕi is the i-th base, and li is the corresponding coeffi-
cient. v) Scaling back: Let bi = ϕi/η, we scale back g̃(U(Q))
in the domain U(Q) ∈ [0,∞] and get the final approximation
f̃(U(Q)) =

∑H
i=1 li(ϕi/η)

U(Q) =
∑H

i=1 lib
U(Q)
i .

Lemma 2. f̃(U(Q)) =
∑H

i=1 lib
U(Q)
i is an ϵ-approximation

of f̂(U(Q)), i.e., |f̃(U(Q)) − f̂(U(Q))| ≤ ϵ, where ϵ is
an arbitrary positive constant and H is a small value only
depending on ϵ.

Proof. The proof is similar to the proof of Theorem 2 in [25],
thus we omit the details here. Note that H can be determined
based on Corollary 1 in [25].

Lemma 2 shows that we concisely approximate the slightly
relaxed utility function f̂ with a sum of exponential functions
which forms a H-dimensional space. In the H-dimensional
space, we can tackle each task’s contribution in an additive
form by using feature vector.

Definition 1. The feature vector of task q is defined as:

vq = ⟨logE[bU(q)
1], logE[bU(q)

2], · · · , logE[bU(q)
H]⟩. (9)

We denote the sum of the feature vectors of the task set Q as
V =

∑
q∈Q vq . The additive property of V is quite interesting,

which can ease the calculation of non-overload probability
by performing an incremental update of V according to
Eq. (4). In this regard, we propose an Expected Utility-based
Risk Evaluation algorithm (EURE), which is summarized in
Algorithm 1. In what follows, we analyze how accurately the
EURE algorithm can evaluate the overload risk.

Theorem 2. Given a task set Q and a resource capacity C,
the EURE algorithm can calculate the probability of exceeding
the relaxed capacity C + γ with an additive error ϵ, i.e.,
|E[f̃(U(Q))] − Pr(U(Q) ≤ C + γ)| ≤ Cϵ + γ, where γ
and ϵ are arbitrary positive constants.

Proof. According to the definition of expectation in measure
theory [26], we have:∣∣∣E[f̃(U(Q))]− Pr(U(Q) ≤ C + γ)

∣∣∣
≤

∣∣∣E[f̃(U(Q))]− E[f̂(U(Q))]
∣∣∣

+
∣∣∣E[f̂(U(Q))]− Pr(U(Q) ≤ C + γ)

∣∣∣
=

∣∣∣∣∫ (f̃(U(Q))− f̂(U(Q))) dPQ(U(Q))
∣∣∣∣+ γ,

(10)

where PQ denotes the probability measure of U(Q). From
Lemma 2, we know that |f̃(U(Q)) − f̂(U(Q))| ≤ ϵ for all
U(Q). Thus we can bound the first term of Eq. (10) as follows:∣∣∣∣∫ (f̃(U(Q))− f(U(Q))) dPQ(U(Q))

∣∣∣∣
≤

∣∣∣∣∫ ϵ dPQ(U(Q))
∣∣∣∣ ≤ Cϵ.

(11)

This completes the proof.
Theorem 2 shows that the proposed EURE algorithm pro-

vides a rigorous ϵ-approximation to the slightly relaxed over-
load risk. The complexity of the EURE algorithm is O(QH),
composed of the following parts: (1) Calculating vq requires
O(H) for each task; (2) Summing up the feature vectors
requires O(QH); (3) Calculating the expected utility based on
Eq. (4) requires O(H). Note that the EURE algorithm involves

vector operations, which can be efficiently implemented using
matrix operations [27] in practice.

B. Submodularity-based Task Scheduling
Based on Algorithm 1, we can transform the problem (P1)

into a more deterministic form:

(P2)max
∑
n∈N

∑
m∈N

Rn∑
r=1

xr,n,m(pkr,n − tr,n,m)

s.t. xr,n,m ∈ {0, 1}, ∀r = 1, · · · , Rn, n ∈ N ,m ∈ N ,∑
m∈N

xr,n,m ≤ 1, ∀r = 1, · · · , Rn, n ∈ N ,

EURE(Qn, Cn) ≤ ∆, ∀n ∈ N .
(12)

where EURE is Algorithm 1 that proposed in §III-A, and
Qn = {qr,m|xr,m,n = 1, r = 1, · · · , Rm,m ∈ N}. EURE
provides a way to accurately evaluate the risk of scheduling
a task set on a node, which enables us to focus on the
schedulable task sets and further reformulate the problem (P2)
into a submodular function maximization problem. For ease
of presentation, We define the set of all tasks in the system as
Z = {qr,n|∀r = 1, · · · , Rn,∀n ∈ N}.

Definition 2. The schedulable task set Υn ∈ Z for node n, is
defined as the task set that satisfies the following conditions:

• The scheduling of any task qr,m in Υn yields a positive
profit, i.e., pkr,m

> tr,m,n.
• Scheduling all tasks in Υn to node n does not violate the

risk constraint.

Definition 3. Given a collection S, whose elements are
disjoint subsets of Z, the objective function of problem (P2)
can be equivalently formulated as a set function A defined by:

A(S) =
∑
Si∈S

∑
qr,m∈Si

(
pkr,m

− tr,m,ni

)
, (13)

where Si ∈ S denotes the i-th subset, tr,m,ni
denotes the

minimal cooperation cost incurred when scheduling the tasks
in Si, as determined by Algorithm 2.

Before we prove the submodularity of the set function A,
we give a definition of submodularity as follows:

Definition 4. (Nonnegativity, Monotonicity, and Submodular-
ity) Given a non-empty finite ground set G, a real-valued set
function y : 2G → R, y is called nonnegative, monotone, and
submodular if it satisfies the following conditions, respectively:

• y(∅) = 0 and y(J) ≥ 0 for all J ⊆ G (nonnegative).
• y(J ′) ≤ y(J) for all J ′ ⊆ J ⊆ G (monotone).
• y(J ′∪e)−y(J ′) ≥ y(J ∪e)−y(J), for any J ′ ⊆ J ⊆ G

and e ∈ G− J (submodular).

Then the submodularity can be proven as follows:

Theorem 3. The set function A defined in Eq. (13) is
nonnegative, monotone, and submodular.

Proof. According to the definition of A in Eq. (13), and
noting that tasks yielding negative profit are not scheduled, it

follows that A is nonnegative and monotone. We now prove
that A is submodular. Consider G is the power set of all tasks,
i.e., G = 2Z . Consider an arbitrary set of tasks J ⊆ G and an
arbitrary set of tasks B ⊆ G− J . We have:

A(J ∪B)−A(J) =
∑

qr,m∈B

(pkr,m
− tr,m,ni

), (14)

where tr,m,ni
is the minimal cooperation cost of task qr,m ∈ B

after scheduling tasks in J . Given an arbitrary subset J ′ ⊆ J ,
we have:

A(J ′ ∪B)−A(J ′) =
∑

qr,m∈B

(pkr,m
− tr,m,n′

i
), (15)

where tr,m,n′
i

is the minimal cooperation cost of task qr,m ∈ B
after scheduling tasks in J ′. Note that two cases can happen:

• Case 1: The task sets in J − J ′ do not affect the
scheduling of tasks in B. In this case, tasks in B will
be scheduled to the same node n, i.e., tr,m,ni

= tr,m,n′
i
;

• Case 2: After scheduling tasks in J − J ′, node n will
violate risk constraint if all tasks in B are scheduled to it,
thus we need to schedule some tasks in B to other nodes
with larger cooperation costs, i.e., tr,m,ni

> tr,m,n′
i
.

Therefore, we have:

tr,m,ni ≥ tr,m,n′
i
. (16)

Combining Eq. (14), (15) and (16), we have:

A(J ∪B)−A(J) ≤ A(J ′ ∪B)−A(J ′). (17)

Thus, A is a submodular set function on G.
Theorem 3 allows us to greedily schedule tasks at the set

granularity. Furthermore, Algorithm 1 supports incremental
update of the overload risk, allowing for a lightweight task
set generation step at the task granularity. This step is partic-
ularly suitable for resource-constrained environments, where
the generated set can serve as a base and be opportunistically
refined to further enhance the scheduling outcome.

Based on the above idea, we propose a Risk-aware Task
Scheduling algorithm based on Submodularity (RTSS), and
the details are described in Algorithm 2. The first step of
the algorithm is to perform a greedy scheduling based on
the submodularity (Line 1-13). At the beginning, we initialize
the set of schedulable tasks Υn for each node n based on
Algorithm 1. Then, in each iteration, the algorithm evaluates
the potential increase in the function A by adding each
schedulable task set Sn to the current set of task sets S. The
task set that yields the maximum increase in A is selected and
added to S. This process continues until all nodes are filled
with tasks or no more tasks can be added without violating the
risk constraint. In the second step, we employ a lightweight
procedure to rapidly generate base task sets (Line 14-24).
Specifically, tasks are sorted according to descending order of
their profit density, which is defined as

pkr,m

E[ukr,m]+
√

Var(ukr,m)
,

where E[ukr,m
] and Var(ukr,m

) are the expected value and
variance of the resource usage of task qr,m, respectively. Each
task is then assigned to nodes in a first-fit manner until the risk
threshold is reached. In the final step (Line 25-28), we compare

Algorithm 2: Risk-aware task scheduling based on
submodularity (RTSS)

Input: The set of tasks qr,m, the set of nodes n, task
profit pk, cooperation cost tr,n,m

Output: Scheduling decision xr,n,m of each task
1 Step 1: Greedy Scheduling
2 Initialize the set S ← ∅
3 Calculate the Schedulable task set Υn for each node n

based on Algorithm 1
4 while |S| < |N | do
5 Set opt← 0, tmp← 0
6 for n ∈ N do
7 for Sn ∈ Υn − S do
8 tmp← A(S ∪ {Sn})
9 if tmp > opt then

10 opt← tmp, S∗ ← Sn

11 S ← S + {S∗}
12 Update Υn based on Algorithm 1

13 Step 2: Lightweight Set Generation
14 Initialize the set S′

n ← ∅ for each node n
15 Sort tasks according to profit density
16 Sort nodes for each task qr,m according to tr,m,n

17 for each sorted task qr,m do
18 for each sorted node n do
19 if EURE(S′

n ∪ {qr,m}) ≤ ∆ then
20 S ′n ← S ′n ∪ {qr,m}
21 break

22 S ′ ← {S′
1, S

′
2, ..., S

′
|N |}

23 Step 3: Result Selection
24 if A(S ′) > A(S) then
25 S ← S ′

26 Set xr,n,m according to S

the profit yielded by the previous two steps, and choose the
one that yields the largest profit as the final scheduling result.

Next, we theoretically analyze the performance of the
proposed RTSS algorithm.

Theorem 4. Our proposed algorithm RTSS has an approxi-
mation ratio of (1− 1/e) for the problem (P2).

Proof. From theorem 3, we know that the set function A(S)
is nonnegative, monotone, and submodular. Meanwhile, the
constraint that |S| ≤ |N | is a cardinality constraint. Due to
these properties, the result of the greedy scheduling step in
Algorithm 2 has an approximation ratio of (1 − 1/e) [28].
Since the lightweight set generation step does not decrease
the value of the function A, the overall approximation ratio of
the algorithm RTSS remains (1− 1/e).

While the number of schedulable task sets may be expo-
nential, prior work [29] shows that a polynomial number
suffices for optimization. To achieve the trade-off between

0 100 200 300 400 500
CPU Usage

0

50

100

Fr
eq

ue
nc

y Requested CPU

Fig. 4. An example of CPU usage and requested CPU in the real-world trace.

algorithm complexity and performance, we construct only
O(|Z|) schedulable task sets per node, where |Z| is the number
of tasks in the system. Thus, the time complexity of Step 1
is O(|N |2|Z|+ |N ||Z|2H), where the first term corresponds
to evaluating the submodular function A for each schedulable
task set, and the second term accounts for evaluating O(|Z|)
schedulable task sets per node. For Step 2, after sorting tasks
and nodes, we iterate through all task-node pairs, updating
feature vectors and calculating overload risk via Eq. (4) in
O(H) per iteration. Thus, the overall time complexity of Step
2 is O(|Z| log |Z| + |N | log |N | + O(|N ||Z|H)), which is
dominated by Step 1. Therefore, the overall time complexity
of Algorithm 2 is O(|N |2|Z|+ |N ||Z|2H). We reiterate that
RTSS can be efficiently implemented using matrix opera-
tions [27] in practice.

IV. EVALUATION

In this section, we carry out extensive simulations based on
the real-world data trace to validate the performance of the
proposed RTSS algorithm.

A. Simulation Setup

We conduct our experiment based on the real-world trace [4]
from a large production cluster of Alibaba’s artificial intel-
ligence platform, as shown in Fig. 4. In this experiment,
we focus on the CPU resources. Unless specified otherwise,
the default experiment parameters are as follows. From the
trace [4], we extract type, data size, CPU usage distribution,
and requested CPU of tasks. According to the trace, the CPU
capacity of edge servers is set to 64 or 96 cores. The number
of tasks is set to 5000, and the number of servers is set
to 10. The revenue is set to 1.2$ for each requested CPU
core according to Google Cloud Platform [30]. Following the
approach in [23], we randomly generated the number of hops
between any two different edge nodes, which is uniformly
distributed in the range of [1, 10]. Referring to the network
price of Google [31], the unit cooperation cost τn,m is set to
0.004$/GB for each hop between node m and node n. The
tasks are randomly generated at each edge server. We set the
threshold for the overload probability constraint as 0.05. The
chance constraint is always satisfied during the experiment.
All results are averaged over 20 runs.

B. Benchmarks

We compare the proposed RTSS algorithm with three typical
benchmarks.

• HPF. Highest Profit First (HPF) is a classic method [32]
to optimize task scheduling without considering over-
booking. It sequentially iterates all possible task-server
pairs and schedules these pairs in the descending order

2000 4000 6000 8000 10000
Number of Tasks

0.2

0.4

0.6

0.8

1.0

Pr
of

it
($

)
×104

RTSS
HPF

HAS
CA

(a) Profit

2000 4000 6000 8000 10000
Number of Tasks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
es

ou
rc

e
U

til
iz

at
io

n RTSS HPF HAS CA

(b) Resource utilization

Fig. 5. Performance with different numbers of tasks.

10 20 30 40 50 60 70 80 90 100
Number of Nodes

0

1

2

3

4

5

6

Pr
of

it
($

)

×104

RTSS
HPF

HAS
CA

(a) Profit

10 20 30 40 50 60 70 80 90 100
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

R
es

ou
rc

e
U

til
iz

at
io

n RTSS HPF HAS CA

(b) Resource utilization

Fig. 6. Performance with different numbers of edge nodes.

of their profit until the total requested computing resource
reaches the computing resource capacity.

• HAS [22]. Hotspot-Aware Scheduling (HAS) algorithm is
designed to schedule tasks in the cloud with overbooking.
It formulates the problem into a probabilistic bin-packing
problem and addresses it using the Γ-robustness theory.
We compare against its offline version using recom-
mended parameters (i.e., p = 0.95 and tp = 40 [22]).

• CA [16]. The Contract Algorithm (CA) focuses on
scheduling tasks on edge servers with overbooking. It
investigates a series of matching games to establish stable
contracts among the cloud, edge, and users. Tasks are then
assigned according to the established contracts.

C. Results

Performance with different numbers of tasks. As shown
in Fig. 5(a), benchmark methods (HPF, HAS, and CA) exhibit
steady profit as the number of tasks increases. This occurs
because these methods cannot effectively utilize the available
resources even when the task pool is limited (e.g., 1000 tasks).
In contrast, RTSS demonstrates a significant increase with
growing task numbers, achieving average profit gains ranging
from 1.06× to 2.47× over the best-performing baseline, HAS.
Regarding resource utilization, as illustrated in Fig. 5(b), HPF,
which does not consider overbooking, maintains relatively low
resource utilization with an average value of only 11.0%. The
matching-based approach (CA) improves resource utilization
to 26.9%, while HAS achieves 47.2% through its overbooking
capability. RTSS further enhances the resource utilization to
82.7%, which is 0.75× higher than HAS, demonstrating its
superior ability to maximize resource efficiency.

Performance with different numbers of edge nodes.
As depicted in Fig. 6(a), all algorithms exhibit an overall
increasing profit trend with the expansion of edge nodes. This
improvement stems from the increased aggregate computing
capacity, which enables the platform to accommodate a larger
task workload. Across different node configurations, RTSS

exp lognorm mixed norm poisson trace uniform
Usage Distribution

0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

 P
ro

fit RTSS HPF HAS CA

(a) Profit

exp lognorm mixed norm poisson trace uniform
Usage Distribution

0.0
0.2
0.4
0.6
0.8
1.0
1.2

R
es

ou
rc

e
U

til
iz

at
io

n

RTSS HPF HAS CA

(b) Resource utilization

Fig. 7. Performance with different usage distributions.

0 2 4 6 8 10
Weight of Cooperation Cost

1
2
3
4
5
6
7
8

Pr
of

it
($

)

×103

RTSS
HPF

HAS
CA

(a) Profit

0 2 4 6 8 10
Weight of Cooperation Cost

0.0

0.2

0.4

0.6

0.8

1.0

R
es

ou
rc

e
U

til
iz

at
io

n RTSS HPF HAS CA

(b) Resource utilization

Fig. 8. Performance with different weights of cooperation cost.

achieves average profit gains of 5.71×, 1.13×, and 5.75×
compared to HPF, HAS, and CA, respectively. Furthermore,
Fig. 6(b) reveals that RTSS maintains superior resource utiliza-
tion, delivering average improvements of 5.36×, 0.63×, and
2.66× over HPF, HAS, and CA, respectively. Notably, RTSS’s
resource utilization experiences a modest decline from 79.5%
to 73.7% as the node count scales from 10 to 100, reflecting
the diminishing task-to-resource ratio in the system.

Performance with different distributions of resource
usage. We construct several synthetic distributions that the
resource usage may follow [33], including exponential (exp),
logarithmic normal (lognorm), normal (norm), Poisson (pois-
son), and uniform distributions (uniform), as well as a mixed
distribution that uniformly samples from all types above.
All synthetic distributions span [0, 0.96] cores with requested
resources of 0.96 cores. The exponential distribution has a
mean of 0.40 cores, while others have a mean of 0.48 cores.
We also include the real-world trace as a baseline reference.
For comparison, profits are normalized by the maximum
achieved under each distribution. As shown in Fig. 7, RTSS
consistently outperforms other baselines across all distribu-
tions due to its distribution-agnostic design. Specifically, RTSS
achieves average profit gains of 1.00×, 0.23×, and 1.01×
and average resource utilization gains of 0.92×, 0.16×, and
0.86× compared to HPF, HAS, and CA, respectively. While
HAS performs well under symmetric distributions, it fails on
complex real-world traces that lack simple characteristics.

Performance with different cooperation costs. We inves-
tigate the impact of varying cooperation costs in Fig. 8, which
represents low cost scenarios such as campus networks to high
cost environments such as wide area networks. We multiply the
cooperation cost tr,n,m by a weight factor ranging from 0 to
10. As the cooperation weight increases, HPF and CA maintain

0.0
1

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

Threshold Parameter

0.00

0.05

0.10

0.15

0.20

0.25
Av

g.
 O

ve
rlo

ad
 R

at
io RTSS

HAS
Ideal

(a) Average overload ratio

0.0
1

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

Threshold Parameter

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
es

ou
rc

e
U

til
iz

at
io

n

RTSS HAS

(b) Resource utilization

Fig. 9. Performance with different overload threshold parameters.

relatively stable resource utilization around 10.6% and 27.2%,
respectively, as they cannot effectively utilize the available
computing resources. HAS, which incorporates overbooking,
achieves an average resource utilization of 38.0%, but its
profit and resource utilization decline as cooperation costs
increase, as it is designed for cloud task scheduling and
overlooks cooperation costs. RTSS, which is designed for
edge task scheduling with overbooking, maintains a high
average resource utilization of 80.0% and delivers average
profit improvement of 10.21×, 3.35×, and 10.21× compared
to HPF, HAS, and CA, respectively.

Accuracy of risk control. As algorithms designed for
resource overbooking, both RTSS and HAS employ a thresh-
old parameter (i.e., ∆ used in Algorithm 2 and 1 − p in
HAS [22]) to constrain the probability of resource overload.
We investigate how accurate these two algorithms can achieve
in controlling the overload ratio (defined as the ratio of
overloaded nodes to all nodes) corresponding to the threshold
parameter. Fig. 9(a) reveals the key to RTSS’s superiority
in resource utilization: RTSS demonstrates remarkable pre-
cision in risk management by ensuring the observed ratio
of overloaded nodes closely tracks the configured threshold.
The discrepancy remains minimal, with a average deviation
of 3.2%. Occasionally, the average overload ratio observed
for RTSS slightly exceeds the specified threshold parameter.
This minor deviation can be effectively mitigated in practical
deployments by setting the threshold parameter marginally
below the desired overload ratio. This figure also suggests
that, thanks to RTSS’s accurate risk control, system operators
can tune the overload threshold to navigate the utilization–
risk trade-off according to their requirements. In contrast,
HAS adopts a more conservative strategy, resulting in a lower
overloaded ratio but at the expense of reduced overall resource
utilization. Consequently, RTSS delivers an average resource
utilization improvement of 2.21× over HAS.

V. RELATED WORKS

Task scheduling without overbooking. Extensive research
has been devoted to task scheduling, under the assumption that
the actual resource consumption matches the requested allo-
cation. For example, Liu et al. [34] use Lyapunov method to
develop an efficient learning-based scheduling algorithm with
deadline and throughput constraints. Liu et al. [35] propose a
novel sunlight-aware heuristic algorithm to schedule tasks in
the context of space edge computing. Luo et al. [29] develop

a submodularity-based scheduling algorithm in geo-distributed
clouds, achieving significant reductions in electricity costs.
Zhao et al. [36] introduce a fast-convergence reinforcement
learning algorithm to collaboratively schedule tasks. Sun et
al. [37] propose a hybrid task scheduling algorithm to deal
with online and offline tasks simultaneously. There are also
some works that focus on jointly optimizing task scheduling
with other decisions, such as resource allocation [38]–[40] and
service placement [32], [41]–[46]. However, in real-world
deployments, applications typically consume only a fraction
of their reserved resources. The absence of overbooking con-
siderations in these scheduling frameworks fundamentally con-
strains their practical applicability in production environments.

Task scheduling with overbooking. Research on
overbooking-aware task scheduling is still in its infancy in
both cloud and edge computing. In cloud computing, existing
approaches typically model the problem as a stochastic
bin-packing problem and utilize probability theory for
solution development [21], [22], [47]. Recently, Wu et al. [22]
proposed an efficient task scheduling algorithm based on Γ-
robustness theory and protecting the physical machines from
hotspots. However, they assume specific usage distribution
features and overlook the cooperation cost between nodes,
which limits their applicability in edge computing. In edge
computing, several studies (e.g. [14]–[18]) explore trading
contracts between cloud, edge, and users for contract-based
scheduling. For instance, Liwang et al. [15] combine offline
and online trading to handle the overbooking uncertainty,
while Tang et al. [17] design auction mechanisms for dynamic
resource overbooking to effectively maximize edge node
profits. The fundamental difference between these works and
RTSS is that they assume binary resource usage, while our
approach handles arbitrary usage levels and better reflecting
real-world scenarios. Tang et al. [23] leverage reinforcement
learning for joint optimization of overbooking and task
scheduling across edge nodes, but suffer from computational
complexity and interpretability issues.

VI. CONCLUSION

In this paper, we investigate the resource overbooking prob-
lem in edge clouds, focusing on risk-aware task scheduling
under uncertain resource usage. We formulate the problem as
a stochastic mixed integer program and prove its NP-hardness.
To address the challenge of quantifying and controlling over-
load risk without assuming specific usage distributions, we
propose the Expected Utility-based Risk Evaluation (EURE)
scheme, which enables precise risk assessment with additive
error guarantees. Building on this, we design a submodu-
lar optimization-based scheduling algorithm that achieves a
(1−1/e)-approximation ratio. Extensive experiments on real-
world datasets demonstrate that our approach significantly im-
proves both profit and resource utilization compared to state-
of-the-art baselines, while maintaining accurate risk control.
These results highlight the potential of risk-aware overbooking
to enhance the efficiency and profitability of future edge
computing platforms.

REFERENCES

[1] “Google distributed cloud,” https://cloud.google.com/distributed-cloud,
2025.

[2] “Aws for the edge,” https://aws.amazon.com/edge/, 2025.
[3] “Alibaba iot edge,” https://www.alibabacloud.com/en/product/linkiotedg

e, 2025.
[4] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,

W. Lin, and Y. Ding, “MLaaS in the wild: workload analysis and
scheduling in large-scale heterogeneous GPU clusters,” in USENIX
Symp. Netw. Syst. Design Implement. (NSDI), 2022, pp. 945–960.

[5] “Resource management for pods and containers,” https://kubernetes.io/
docs/concepts/configuration/manage-resources-containers/, 2025.

[6] “Google cluster workload traces,” https://www.kaggle.com/datasets/derr
ickmwiti/google-2019-cluster-sample, 2025.

[7] H. Yu, H. Wang, J. Li, X. Yuan, and S.-J. Park, “Accelerating serverless
computing by harvesting idle resources,” in ACM Web Conf. (WWW),
2022, pp. 1741–1751.

[8] L. Tomás and J. Tordsson, “An autonomic approach to risk-aware data
center overbooking,” IEEE Trans. Cloud Comput., vol. 2, no. 3, pp.
292–305, 2014.

[9] T. Jin, Z. Cai, B. Li, C. Zheng, G. Jiang, and J. Cheng, “Improving
resource utilization by timely fine-grained scheduling,” in Eur. Conf.
Comput. Syst. (EuroSys), 2020, pp. 1–16.

[10] X. Sun, C. Hu, R. Yang, P. Garraghan, T. Wo, J. Xu, J. Zhu, and C. Li,
“ROSE: cluster resource scheduling via speculative over-subscription,”
in IEEE Int. Conf. Distrib. Comput. Syst. (ICDCS), 2018, pp. 949–960.

[11] Z. Schwartz, T. D. Webb, M. Altin, and A. Riasi, “Overbooking and
performance in hotel revenue management,” Int. J. Hosp. Manag., vol.
129, p. 104192, 2025.

[12] A. Nazifi, K. Gelbrich, Y. Grégoire, S. Koch, D. El-Manstrly, and
J. Wirtz, “Proactive handling of flight overbooking: how to reduce
negative ewom and the costs of bumping customers,” J. Serv. Res.,
vol. 24, no. 2, pp. 206–225, 2021.

[13] K. Chard and K. Bubendorfer, “High performance resource allocation
strategies for computational economies,” IEEE Trans. Parallel Distrib.
Syst., vol. 24, no. 1, pp. 72–84, 2012.

[14] H. Qi, M. Liwang, S. Hosseinalipour, X. Xia, Z. Cheng, X. Wang, and
Z. Jiao, “Matching-based hybrid service trading for task assignment over
dynamic mobile crowdsensing networks,” IEEE Trans. Serv. Comput.,
vol. 17, no. 5, pp. 2597–2612, 2024.

[15] M. Liwang, Z. Gao, S. Hosseinalipour, Z. Cheng, X. Wang, and Z. Jiao,
“Long-term or temporary? hybrid worker recruitment for mobile crowd
sensing and computing,” IEEE Trans. Mobile Comput., vol. 24, no. 2,
pp. 1055–1072, 2025.

[16] H. Qi, M. Liwang, X. Wang, L. Li, W. Gong, J. Jin, and Z. Jiao, “Bridge
the present and future: a cross-layer matching game in dynamic cloud-
aided mobile edge networks,” IEEE Trans. Mobile Comput., vol. 23,
no. 12, pp. 12 522–12 539, 2024.

[17] Z. Tang, F. Zhang, X. Zhou, W. Jia, and W. Zhao, “Pricing model for
dynamic resource overbooking in edge computing,” IEEE Trans. Cloud
Comput., vol. 11, no. 2, pp. 1970–1984, 2023.

[18] R. Chen, X. Wang, and X. Liu, “Smart futures based resource trading and
coalition formation for real-time mobile data processing,” IEEE Trans.
Services Comput., vol. 15, no. 5, pp. 3047–3060, 2022.

[19] J. Kleinberg, Y. Rabani, and E. Tardos, “Allocating bandwidth for bursty
connections,” in ACM Symp. Theory Comput. (STOC), 1997, pp. 664–
673.

[20] M. C. Cohen, P. W. Keller, V. Mirrokni, and M. Zadimoghaddam, “Over-
commitment in cloud services: bin packing with chance constraints,”
Manag. Sci., vol. 65, no. 7, pp. 3255–3271, 2019.

[21] J. Yan, Y. Lu, L. Chen, S. Qin, Y. Fang, Q. Lin, T. Moscibroda,
S. Rajmohan, and D. Zhang, “Solving the batch stochastic bin packing
problem in cloud: a chance-constrained optimization approach,” in ACM
SIGKDD Conf. Knowl. Discov. Data Min. (KDD), 2022, pp. 2169–2179.

[22] J. Wu, P. Popov, W. Yang, A. Gudkov, E. Ponomareva, X. Han, Y. Qiu,
J. Song, and S. Romanov, “Hotspot-aware scheduling of virtual machines
with overcommitment for ultimate utilization in cloud datacenters,” IEEE
Trans. Autom. Sci. Eng., vol. 22, pp. 6809–6821, 2025.

[23] Z. Tang, F. Mou, J. Lou, W. Jia, Y. Wu, and W. Zhao, “Joint resource
overbooking and container scheduling in edge computing,” IEEE Trans.
Mobile Comput., vol. 23, no. 12, pp. 10 903–10 917, 2024.

[24] J. Li and A. Deshpande, “Maximizing expected utility for stochastic
combinatorial optimization problems,” in IEEE Symp. Found. Comput.
Sci. (FOCS), 2011, pp. 797–806.

[25] J. Li and A. Deshpande, “Maximizing expected utility for stochastic
combinatorial optimization problems,” Math. Oper. Res., vol. 44, no. 1,
pp. 354–375, 2019.

[26] P. R. Halmos, Measure theory. Springer, 2013.
[27] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,

D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith et al., “Array
programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362,
2020.

[28] A. Krause and D. Golovin, “Submodular function maximization,”
Tractability, vol. 3, pp. 71–104, 2014.

[29] L. Luo, G. Zhao, H. Xu, Z. Yu, and L. Xie, “TanGo: a cost optimization
framework for tenant task placement in geo-distributed clouds,” in IEEE
Conf. Comput. Commun. (INFOCOM), 2023, pp. 1–10.

[30] “Google cloud price,” https://cloud.google.com/compute/vm-instance-
pricing, 2025.

[31] “Google network price,” https://cloud.google.com/vpc/pricing, 2025.
[32] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang,

K. S. Chan, and K. Poularakis, “Service placement and request schedul-
ing for data-intensive applications in edge clouds,” IEEE/ACM Trans.
Netw., vol. 29, no. 2, pp. 779–792, 2021.

[33] S. Liu, L. Pan, S. Liu, and K. Qi, “An online algorithm for inference
service scheduling using combinations of server-based and serverless
instances in cloud environments,” IEEE Internet Things J., vol. 12, no. 8,
pp. 11 153–11 165, 2025.

[34] Q. Liu and Z. Fang, “Learning to schedule tasks with deadline and
throughput constraints,” in IEEE Conf. Comput. Commun. (INFOCOM),
2023, pp. 1–10.

[35] W. Liu, Z. Lai, Q. Wu, H. Li, Q. Zhang, Z. Li, Y. Li, and J. Liu, “In-orbit
processing or not? sunlight-aware task scheduling for energy-efficient
space edge computing networks,” in IEEE Conf. Comput. Commun.
(INFOCOM), 2024, pp. 881–890.

[36] Y. Zhao, C. Qiu, X. Shi, X. Wang, D. Niyato, and V. C. M. Leung,
“Cur-coedge: curiosity-driven collaborative request scheduling in edge-
cloud systems,” in IEEE Conf. Comput. Commun. (INFOCOM), 2024,
pp. 411–420.

[37] Y. Sun, C. Lin, J. Ren, P. Wang, L. Wang, G. Wu, and Q. Zhang, “Subset
selection for hybrid task scheduling with general cost constraints,” in
IEEE Conf. Comput. Commun. (INFOCOM), 2022, pp. 790–799.

[38] Y. Li, T. Zeng, X. Zhang, J. Duan, and C. Wu, “Tapfinger: task placement
and fine-grained resource allocation for edge machine learning,” in IEEE
Conf. Comput. Commun. (INFOCOM), 2023.

[39] T. Ren, Z. Hu, H. He, J. Niu, and X. Liu, “FEAT: towards fast
environment-adaptive task offloading and power allocation in MEC,”
in IEEE Conf. Comput. Commun. (INFOCOM), 2023, pp. 1–10.

[40] Y. Liu, Y. Mao, Z. Liu, F. Ye, and Y. Yang, “Joint task offloading and
resource allocation in heterogeneous edge environments,” in IEEE Conf.
Comput. Commun. (INFOCOM), 2023, pp. 1–10.

[41] H. Wu, W. Lin, H. Zhang, F. Shi, W. Shen, K. Li, and A. Y.
Zomaya, “Container scheduling strategy based on image layer reuse and
sequential arrangement in mobile edge computing,” IEEE Trans. Mobile
Comput., 2025, early Access.

[42] H. Liu, S. Liu, S. Long, Q. Deng, and Z. Li, “Joint optimization of model
deployment for freshness-sensitive task assignment in edge intelligence,”
in IEEE Conf. Comput. Commun. (INFOCOM), 2024, pp. 1751–1760.

[43] K. Peng, L. Wang, J. He, C. Cai, and M. Hu, “Joint optimization of
service deployment and request routing for microservices in mobile edge
computing,” IEEE Trans. Serv. Comput., vol. 17, no. 3, pp. 1016–1028,
2024.

[44] Z. Tang, J. Lou, and W. Jia, “Layer dependency-aware learning schedul-
ing algorithms for containers in mobile edge computing,” IEEE Trans.
Mobile Comput., vol. 22, no. 6, pp. 3444–3459, 2023.

[45] L. Wang, X. Liu, H. Ding, Y. Hu, K. Peng, and M. Hu, “Energy-delay-
aware joint microservice deployment and request routing with dvfs in
edge: a reinforcement learning approach,” IEEE Trans. Comput., vol. 74,
no. 5, pp. 1589–1604, 2025.

[46] Y. Li, L. Gu, Z. Qu, L. Tian, and D. Zeng, “On efficient zygote container
planning and task scheduling for edge native application acceleration,”
in IEEE Conf. Comput. Commun. (INFOCOM), 2024, pp. 2259–2268.

[47] M. C. Cohen, P. W. Keller, V. Mirrokni, and M. Zadimoghaddam, “Over-
commitment in cloud services: bin packing with chance constraints,”
Manag. Sci., vol. 65, no. 7, pp. 3255–3271, 2019.

