vNetRadar: Lightweight and Network-Wide Traffic
Measurement in Virtual Networks

Tie Ma, Jin Zhang, Long Luo, Hongfang Yu, Gang Sun, Jian Sun
University of Electronic Science and Technology of China, Chengdu, China
mt@std.uestc.edu.cn, {zhangjin, llong, yuhf, gangsun, sj}@uestc.edu.cn

Abstract—Measuring traffic metrics is indispensable in virtual
networks as it is the basis for a wide range of applications, such as
network diagnostics and performance evaluation of the network
algorithms. However, existing measurement schemes fail to have
all these excellent characteristics simultaneously: 1) fine-grained,
i.e. to obtain per packet level information. 2) lightweight, namely
low CPU and bandwidth overhead. 3) network-wide, which
means obtaining metrics of the whole network, e.g. per packet
path. 4) easy-to-deploy, which refers to deployment without addi-
tional modification of Maximum Transmission Units (MTUs). We
design vNetRadar, a virtual network measurement system, which
has these excellent characteristics simultaneously. Specifically,
vNetRadar 1) identifies each packet without increasing the size
of each packet, to obtain network-wide metrics without MTU
modification, 2) allocates each packet an area in memory, called
backpack, and carries metadata in it to largely reduce bandwidth
overhead. vNetRadar is implemented based on the extended
Berkeley Packet Filter (eBPF) and is mainly in kernel space,
avoiding the CPU overhead of copying packets to user space when
performing the fine-grained measurement. Evaluation results
show that the easy-to-deploy vNetRadar can get fine-grained
network-wide metrics with low CPU and bandwidth overhead.

I. INTRODUCTION

In recent years, with the development of Network Function
Virtualization (NFV), virtual networks have gained wide appli-
cation in areas such as digital twin networks [3] and network
emulation [1] [2]. For example, the well-known mininet [1] is
a virtual network emulator and can generate a virtual network
with several nodes on a server. In this case, measuring the
metrics of the traffic in the virtual network is crucial as
it can help diagnose the state of network traffic, verify the
performance of network algorithms, etc.

To provide a better view of the virtual network, an ideal
network measurement scheme should have the following four
excellent characteristics: 1) fine-grained, i.e. to obtain per-
packet level metrics; 2) lightweight, namely low overhead in
terms of CPU and bandwidth. 3) network-wide, which means
obtaining some metrics of the whole network rather than a
single measurement point, such as the path of a specific packet.
4) easy-to-deploy: a scheme should be deployed without MTU
modification. Some schemes need to increase the packet size
during the measurement, causing the MTUs of the VNFs to

This work is supported by the National Key Research and Development
Program of China (2019YFB1802800, 2021 YFB3101000) and the National
Natural Science Foundation of China (62102066). This work is also being
supported by Open Research Projects of Zhejiang Lab (NO. 2022QA0AB02).
Corresponding author: Hongfang Yu.
978-1-6654-3540-6/22/$31.00 © 2022 IEEE

need to be manually and carefully modified. Moreover, not
every VNF supports the modified MTU natively.

However, existing schemes fail to have these four excellent
characteristics at the same time due to the following two
challenging conflicts. 1) The conflict between fine-grained
and lightweight, caused by carrying metadata in packets
and the packet copying. For instance, the recently emerging
In-band Network Telemetry (INT) [8] inserts metadata to
packets at each hop, then uses the network to transfer the
metadata to a remote metadata analyzer, which occupies a
huge amount of network bandwidth. The metadata is the infor-
mation about the state of the packet as it passes through each
hop, including ingress and egress timestamp, etc. tcpdump
[12] is a commonly used mirroring measurement scheme that
mirrors packets from the kernel data path. The packet copying
from the kernel space to the user space results in a large CPU
overhead when performing the fine-grained measurement. 2)
The conflict between network-wide and easy-to-deploy,
caused by the packet identification problem. To obtain
network-wide metrics, it is necessary to identify the same
packet at different locations in the network, to correlate the
experience of the same packet at different measurement points.
Since there are not enough free bits in the packet, a common
practice is to increase the packet size and carry an identifier in
the extended bits, resulting in the MTU modification and in-
creasing the deployment difficulty. For example, INT’s method
of carrying metadata within packets implicitly enables packet
identification and thus able to obtain network-wide metrics,
but pays the price of increasing the packet size and modifying
the MTUs. tcpdump [12] does not natively implement packet
identification, so it is not network-wide but is easy-to-deploy.

We notice a feature of virtual networks that none of the
existing solutions exploit: virtual networks usually build on
the same server, thus sharing the same server environment
(e.g. CPU, memory, and disk). Leveraging this feature, we
would like to propose a measurement scheme that can resolve
all the above-mentioned conflicts and thus have all the four
excellent characteristics simultaneously. First, to solve the
packet identification problem, we want to assign a global
unique ID to each packet, whereas the distributed network
nodes can only generate local unique IDs. Fortunately, the
shared server environment enables us to have a global view,
which could use to allocate global unique IDs to packets.
To perform packet identification without increasing the packet
size, we wish to find some native bits of the packet to carry this

TABLE I: Representative Network Measurement Schemes

Lightweight

Category Name | Fine-grained | Low CPU Overhead | Low Bandwidth Overhead | Network-wide | Easy-to-deploy
INT [8] v X X v X
In-band PINT [9] X v v 4 X
Telemetry LightGuardian [10] 4 %4 v 4 X
PPTMon [I1] 4 %4 X 4 X
Traffic tecpdump [12] ['4 X ['4 X 4
Mirroring Everflow [13] 4 4 4 [4 4
Shabgt;(: dE;;lg:::tl:_;nt' vNetRadar (Ours) v v v v v

global unique ID while ensuring these bits function properly.
Besides, to solve the bandwidth overhead of carrying metadata
inside the packets, we find that although the bandwidth in the
virtual network is precious, the server has a large amount of
memory. Thus we consider allocating a corresponding area in
the server memory for each packet to store metadata, which
avoids the network bandwidth overhead of carrying metadata
in the packets. Finally, to avoid the packets copying, we prefer
to implement the measurement scheme in the kernel space.

In this paper, we present vNetRadar, a fine-grained,

lightweight, network-wide, and easy-to-deploy virtual network
traffic measurement system. vNetRadar overwrites some bits
of the IP header to carry a Global Unique ID (GUID) to
uniquely identify individual packets in the virtual network.
We maintain the overwritten bits to ensure they work properly,
and they are recovered when the packets leave the measure-
ment domain. vNetRadar allocates an area in memory called
backpack for each in-flight packet' and carries metadata in
it. Finally, vNetRadar is implemented in the kernel space
based on the extended Berkeley Packet Filter (eBPF)’ to
perform packet overwriting, information extraction, and other
operations directly on the kernel data path.

The main contributions of this paper are as follows:

o We design vNetRadar and implement it based on
eBPF. vNetRadar is a lightweight and network-wide
traffic measurement system for virtual networks that can
be easily deployed and can obtain fine-grained metrics.

o We design a solution for identifying packets without
increasing their size, which allows network-wide metrics
to be obtained without MTU modification.

o We design the backpack mechanism to store metadata,
which largely reduces bandwidth consumption.

« We demonstrate the application of vNetRadar and
evaluate its performance. Extensive evaluation indicates
that the easy-to-deploy vNetRadar can obtain fine-grained
network-wide metrics with low CPU and bandwidth
overhead, while the operations on the data path introduce
a negligible network delay.

II. BACKGROUND AND RELATED WORK

Since we use Extended Berkeley Packet Filter (eBPF) to
implement our work (vNetRadar), we begin with a brief
introduction to eBPF to better explain this work and then
introduce the related work most relevant to this work.

!In-flight packets are packets which are sent but have not arrived yet.
2«eBPF,” https://ebpf.io/

A. Background on Extended Berkeley Packet Filter

Extended Berkeley Packet Filter (eBPF) is a high perfor-
mance tracing framework inside the Linux kernel. eBPF allows
custom programs to be attached to points that will be triggered
by the execution of system events or functions, these points
are called hooks. eBPF programs can store data in the key-
value data structure located in kernel space, which is called
BPF map and can be shared between different eBPF programs.

B. Related Work

As shown in TABLE I, based on how the measurement
information is obtained, we divide the related network mea-
surement schemes into two categories: 1) In-band Telemetry.
In-band telemetry is the scheme that uses the business traffic
to carry metadata. INT [8] is the representative of this type
of scheme, it inserts metadata into packets at each hop thus
having a large bandwidth overhead. PINT [9] reduces the
bandwidth overhead of INT by sampling, which makes it fail
to get fine-grained information. LightGuardian [10] achieves
measurement by embedding a small field in packet headers,
but it grows packet size and requires MTU modification.
PPTMon [11] is a scheme based on eBPF, it focuses on
the packet latency. Like INT, PPTMon inserts metadata to
the packet per hop to get the network-wide latency, but the
inserted metadata consumes lots of bandwidth and needs MTU
modification. 2) Traffic Mirroring. Traffic mirroring schemes
export traffic from the data plane to get a view of the network.
tcpdump [12] is a famous traffic mirroring scheme with a
huge CPU overhead. Everflow [13] selectively matches and
mirrors specific packets to be measured, decreasing the CPU
overhead but leading to coarse-grained. In summary, to the
best of our knowledge, none of the existing network measure-
ment schemes except our shared environment-based scheme,
vNetRadar, has these excellent characteristics simultaneously:
fine-grained, lightweight, network-wide, and easy-to-deploy.

III. DESIGN AND IMPLEMENTATION OF VNETRADAR

In this section, we first introduce the architecture and
workflow of vNetRadar. Then we show the two key ideas: the
packet identification solution and the backpack mechanism.
Finally, we discuss the metrics supported by vNetRadar.

A. vNetRadar Architecture and Workflow

As shown in Fig. 1, the virtual network uses the Virtual
Network Functions (VNFs) as network nodes, in vNetRadar
architecture, there are three types of VNF roles that collaborate

Per Packet Path
GUID Value

---» BPFMap I/O
— Network Flow
GUID Global Unique ID
>OO Metric Data

GUID] Value

Metric Storage|
(BPF Maps)

0x123456[VNF1 5 VNF2SVNF3

> :O “eeu (< Path of Packet 05123456

Transit - Sink
Y 'Y
O\erwrmen Bus'i 'i 4
26-bit) o Original Packet
IZ[IIIT:I N

Acwasud Update Aues;ed \Delete

Source -~

I\
14

Credte

Ong\nal Packet

1P Header

Al GUIDlMetadatal Al GUIDlMetadatal »
Key Value
GUID Metadata Backpack GUID Metadata
Name Value (An Entry of BPF Map) Name! Value
0x123| Path | [VNF1] a e 0x123| Path [VNF1, VNF2
456 456 | ...
Fig. 1: vNetRadar architecture and workflow. In this figure, we

demonstrate how vNetRadar measures the path of a packet.

to obtain the metrics of each packet as it passes by: source,
transit, and sink.

The source is the first hop of the measurement path®. When
a packet arrives at a source, the source overwrites some bits
of its IP header to allocate it a GUID. This way, vNetRadar
is able to uniquely identify this packet in the virtual network.
Then the source creates a key-value entry in a shared BPF map,
called backpack, to carry metadata and the original value of
the overwritten bits in it. To guarantee one packet uniquely
corresponds to one backpack, we use the GUID of the packet
as the key of the backpack. The backpack can be accessed
by the transit and the sink later.

The transit is the middle hop. Using the GUID in the IP
header of the packet as the key, the fransit gets the backpack
corresponding to the packet. The metadata in the backpack can
be used to calculate some network-wide metrics of the packet
such as path and per-hop latency. The metadata is updated by
the transit using its local information (e.g. current timestamp
and device ID). Besides, since the overwritten bits of the IP
header may be changed by the VNFs, the transit is responsible
for maintaining these bits to keep the GUID remaining the
same when the packet reaches the next hop.

The last hop, sink, also can access the backpack to calculate
the network-wide metrics. Specifically, the sink restores the
overwritten bits using their original value in backpack to
guarantee transparency outside the measurement path. Finally,
to prevent the backpacks from occupying memory for a long
time, the sink deletes the backpack in the BPF map.

On demand, the source, transit, and sink can store metrics
in vNetRadar’s metric storage module, which is implemented
using several BPF maps. Since a VNF can be the first hop and
the last hop on the measurement path of different measured
flows simultaneously, a VNF can act as a source and a sink at
the same time. The VNF roles are implemented by our eBPF
program which is attached to the Traffic Control (TC) clsact
[14] hook at egress. This hook is located at the bottom of the
kernel network stack, and our program process each packet as
it is about to leave the VNF. Since our eBPF program is an

3The measurement path of a packet means its path in a vNetRadar-enabled
network.

-Overwritten Bits in the Case of Atomic Packet

—

13b 8b

- Overwritten Bits in All Cases

IP Header

HJ %—I
2 16b

Flow Unique ID (FUID)

Destination IP|
Address

Source IP
Address

IFragment

| Offset Protocol| ...

3-Tuple |

13b + 26b-~ The number of the different values of the FUID is at least 226

Global Unique ID (GUID)

Fig. 2: Packet identification solution. We overwrite some bits of the
IP header and combine them with several other fields to form the
Global Unique ID (GUID).

additional procedure on the data path and does not disrupt the
original function of VNF, vNetRadar supports multiple kinds
of VNF such as router, firewall, etc.

B. Packet Identification Solution

Why is packet identification required? To get the
network-wide metrics, individual packets should be consis-
tently traced across the network, which requires us to identify
each packet. For example, to obtain the path of a specific
packet, we need to identify this packet among the large number
of packets received by each VNF.

Why not use the IP ID field to uniquely identify each
packet? To identify each in-flight packet in the network,
each in-flight packet should have a unique identifier, i.e.
the number of different values of the identifier should be
greater than the number of in-flight packets, which equals
the bandwidth-latency product of traffic plus the number of
packets in bottleneck buffer [6]. A natural idea is to use the
IP ID field as the identifier. According to the RFC 6864 [4],
the IP packets are divided into the atomic packets and the non-
atomic packets, the former are packets that are not and will
not be fragmented, and the latter are packets that are already
fragmented or may be fragmented in the future. For the atomic
packets, the IP ID is meaningless [4], and some traffic sources
may generate non-varying IP IDs, which prevents the IP ID
field used to identify the packets; for the non-atomic packets,
the IP IDs are unique but only have 65536 different values,
which are not enough even in a small buffer scenario (e.g.
a 5 MB buffer can hold 78125 64-byte packets) or a small
bandwidth-latency product scenario (e.g. a 1 Mpps flow on a
1 second latency link has 10° in-flight packets).

Our packet identification solution. We design the GUIDs
to identify individual in-flight packets in the virtual network.
The GUID is assigned by source and maintained by transit.
As shown in Fig. 2, instead of other schemes that increase the
packet size to perform the packet identification, we directly
use or overwrite some native fields of the IP header to
carry the GUID. The GUID includes two parts, the 3-tuple
(source IP address, destination IP address, and protocol) and
the Flow Unique ID (FUID). We use the primitive function
of the 3-tuple to identify each IP flow. The FUID consists
of the Differentiated Services Code Point (DSCP) field, the
Identification (ID) field, the Time To Live (TTL) field, and the
Fragment Offset field of the IP header. For the DSCP field, we

TABLE II: Contents of the Currently Implemented Metadata

Name
ttl_original
dscp_original
ip_id_original

Description

The original TTL value in the packet
The original DSCP value in the packet
The original IP ID value in the packet

first_hop_ts ns level timestamp at the source
previous_hop_ts | ns level timestamp at the previous hop
device_id Device ID

path An array which represents the packet path

overwrite its least important 2 bits, which has little impact on
the Quality of Service (QoS) policy [7]. For the Identification
field, since it is unique if the packet is non-atomic, we only
overwrite it in the case of atomic packets. For the TTL field,
we overwrite all 8 bits of it. To ensure the TTL field remains
the same at each hop and can perform the function of the TTL
correctly, as the packet passes through the VNF (e.g. a router)
which decreases the value of the TTL field, we increase the
value of the TTL field in the packet by 1 and decrease the
original TTL value in backpack by 1. Once the original TTL
value of the packet becomes 1, we set the value of the TTL
field to 1 to make the packet be dropped by the VNF. For the
Fragment Offset field, we directly use it to identify non-atomic
packets which have the same 3-tuple and IP ID.

Why does our packet identification solution work? Here
we discuss if the number of the GUIDs is enough to identify
each in-flight packet. On one hand, the GUID consists of the
3-tuple and the FUID, but in the worst case, there is only 1
IP flow, thus we only discuss the number of the FUIDs. The
Fragment Offset field of the FUID only has specific values
when the packet is non-atomic and is always 0 when the packet
is atomic, besides, the number of the different values of the
overwritten bits of DSCP, ID and TTL field is 226 (i.e. 6.7
107), thus the number of FUIDs is at least 225. On the other
hand, the number of the in-flight packets can be divided into
two parts: the number of the packets in the buffer and the
bandwidth-latency product. In a large buffer scenario, taking
a 50 MB buffer as an example, it can only hold 0.78M 64-byte
packets, which is small compared to the number of the FUIDs.
For the bandwidth-latency product, we regard the maximum
bandwidth as 2.5 Mpps, which is the forwarding rate of DPDK
vSwitch, the fastest forwarding tool in the virtual networks [5].
Even if the traffic reaches the maximum rate, the GUID is
insufficient when the packet latency reaches 26.8 s (226/2.5 x
109), which is a large value and is hard to reach. In summary,
the number of the GUIDs is greater than the number of the
in-flight packets, thus our identification solution works.

C. Backpack Mechanism

To obtain the network-wide metrics, it is necessary to store
metadata for each packet like INT. Since carrying metadata
inside the packet is expensive and consumes lots of bandwidth,
we design the backpack mechanism to carry the metadata in
the server memory.

Data structure. A backpack is an entry of a BPF map. The
key of the backpack is the GUID, which ensures that one
packet uniquely corresponds to one backpack. The value is

the metadata, which is used for packet recovery and network-
wide metrics calculation. In our current implementation, the
content of the metadata in backpack is shown in TABLE II.

Maintenance of the number of the backpacks. To achieve
control over memory usage, we maintain the number of back-
packs approximately equal to the number of in-flight packets.
Otherwise, the large number of backpacks would result in
huge memory usage. The maintenance includes the creation
and deletion of the backpacks. The source is responsible for
the creation of the backpack for each packet, and the sink
deletes the backpacks of the packets that reach it. However,
for the packets that are lost in the way, the sink cannot be
aware of them. Thus we design a loss detection module to
perform the detection of the lost packets and can delete the
corresponding backpacks. Since the common implementation
of VNF includes the container technology which shares the
OS kernel with the server and the virtual machine (VM)
technology which does not share the OS kernel, the loss
detection module has two ways to detect the lost packets. The
first way is suitable for the container VNFs. Leveraging the
feature that the kernel function kfree() is called when a packet
is lost in a container, we attach an eBPF program on the hook
of the kfree() function. Every time the kfree() is called, we can
know which packet is lost. For the VM VNFs, the kernel is
not shared, so the packet loss in the VM does not trigger the
kfree() in the server kernel. We preset a timeout value and then
poll backpacks periodically, if the time since the last update
of the backpack exceeds the timeout value, we determine that
the packet corresponding to the backpack has been dropped.

D. Supported Metrics

Here we give an introduction of the metrics supported by
vNetRadar, these metrics are on a per-hop and per-packet level.

Throughput. Throughput can be used to measure the per-
formance of transport protocols. For each VNF, over a period
of time AT, we get the size of each packet and add it up
to the total data volume A, then the traffic throughput of the
VNF equals A/AT.

Latency. Latency is an important factor affecting QoS. The
supported latency includes the per-hop latency and the end-
to-end latency. Since the virtual Ethernet pair used to connect
VNFs is just a pointer exchange with very low latency, we
consider the per-hop latency as T; — T;_;, where T; is the
timestamp when the packet leaves the ¢;;, VNF. Similarly, the
end-to-end latency is 7; — 73. Since the VNFs are all on the
same server, the time between the VNFs is synchronized.

Packet Loss Location. Locating where packet loss occurs
plays a significant role in locating where the black holes and
the congestion occur. Since the lost packet’s metadata carries
the device ID of the last node it passes through, we can know
where the packet is dropped.

Path. Per packet path can help evaluate the traffic schedul-
ing algorithms. There is an array P in the packet’s metadata,
for each VNF the packet passes through, we push the device
ID of that VNF into P, thus enabling the path recording.

3 End Host

@3 BMv2 Switch

Path #1

o9 |

B | |
€]/ |
{

———

Preset Uniformly - Pdth #3
Distributed Delay:

®© 0ms~20ms © 0ms~40ms
© 0ms~60ms O 0ms~80ms

Path #4

Fig. 3: The load balancing scenario, where s2, s3, s4, and s5 add a
uniformly distributed delay to each packet that passes through it.

Other Metrics. Besides, more metrics such as flow com-
pletion time and latency jitter can be measured by carrying
the desired metadata in the backpacks as required.

IV. EVALUATION

We conduct experiments on a 64-core server with two In-
tel(R) Xeon(R) Gold 5218@2.30GHz CPUs and 128GB RAM.
The OS is Ubuntu 20.04 with Linux kernel 5.13. We first use
a load balancing experiment to demonstrate vNetRadar’s ap-
plication and verify its function, then three other experiments
are conducted to evaluate vNetRadar’s performance.

A. Use Case: Load Balancing in Virtual Network

Researchers often evaluate the load balancing algorithms
through virtual network emulation, therefore, it will be helpful
if metrics such as path and per-hop delay can be measured. We
measure these two metrics of the traffic in a load balancing
scenario® from the network emulation system, Kathard [2],
to demonstrate vNetRadar’s ability to get the fine-grained
network-wide metrics. The topology of the scenario is shown
as Fig. 3, where the BMv2 switch stands for Behavioral Model
version 2, the P4 software switch®. We let hl send 400 TCP
flows with randomly generated pairs of source and destination
TCP ports to h2, each flow has 500 packets, and sl routes
the flows to one of the four paths based on the hash value of
the 5-tuple (i.e. the source TCP port, the destination TCP port
and the 3-tuple) of the packet header. In addition, we use TC
on s2, s3, s4, and s5 to let these VNFs have a delay with a
uniform distribution ranging from Oms to 20ms, Oms to 40ms,
Oms to 60ms, Oms to 80ms, respectively.

As shown in Fig. 4, vNetRadar reports that the number of
flows on each of the 4 paths is close to 100, which proves that
sl completes the load balancing task correctly. Fig. 5 is plotted
from the per-hop per-packet latency and shows the distribution
of the latency for each packet as it passes through s2, s3, s4,
and s5. We can see that most of the packets’ latency follows a
uniform latency distribution as expected, while a few packets
have a slightly higher latency than the preset maximum latency
due to queuing etc. These two results reported by vNetRadar
are in line with expectations, proving that vNetRadar can
correctly obtain fine-grained network-wide metrics.

4“the load balancing scenario,” https:/github.com/KatharaFramework/Kath
ara-Labs/tree/master/P4/05-ECMP
5“Behavioral model,” https://github.com/p4lang/behavioral-model

=
o o
o o

(=)}
o

— s2

s3
— s4
— s5

Number of Flows
5

N
o

0

#1 #2 #3
Path Number

Fig. 4: vNetRadar measures the Fig. 5: vNetRadar accurately mea-

#4 o 20 40 60 80
Packet Latency (ms)

sures the distribution of the per-
hop per-packet latency.

per-flow path exactly.

B. Performance Evaluation

We compare vNetRadar with two typical schemes:

e tcpdump [12]. tcpdump is a common traffic mirroring
scheme used in virtual networks. We carry a unique ID in
the packet payload to help tcpdump perform the packet
identification, thus can get network-wide metrics.

e PPTMon [11]. Similar to vNetRadar, PPTMon is also
an eBPF-based scheme. Meanwhile, as stated in Section
II-B, the mechanism of PPTMon is similar to the well-
known INT. Thus PPTMon is representative to be com-
pared. In our experiments, we use PPTMon’s continuous
mode (i.e. measure every packet) and disable its event
filtering mechanism to get the fine-grained data.

As shown in Fig. 6, we use a testbed to evaluate the
bandwidth, latency, and CPU overhead of the measurement
schemes. The testbed is built on containers and consists of 2
end host nodes and N routers (containers configured with IP
forward). We will specify the value of IV in each experiment.

1) Bandwidth Overhead

Some schemes use extra bits to carry the metadata and
bring the bandwidth overhead. To evaluate this overhead, we
measure the goodput (i.e. the end-to-end effective transfer rate)
on different measurement path lengths N, which is set from
1 to 10. The link bandwidths between the forwarding nodes
are limited to 100 Mbps by TC, and a UDP traffic is sent
from hl to h2 at a speed greater than 100 Mbps. The schemes
measure this UDP traffic to get its network-wide metrics. Since
the performance of PPTMon is affected by the packet size, we
evaluate the cases of packet sizes of 64 bytes and 1514 bytes.

Fig. 7 shows that vNetRadar and tcpdump have a low band-
width overhead and enable high goodput when performing
measurement tasks. As the path length increases, the UDP
goodput of vNetRadar and tcpdump maintains the highest
value, while the goodput of PPTMon gradually decreases.
When the path length is 10 and the packet size is 64 bytes,
the goodput of PPTMon decreases by 42.4%. This is due to
PPTMon inserting a lot of extra bits into the packet, which
takes up a large amount of bandwidth. Note that this bandwidth
overhead is not only present in PPTMon, but also in other in-
band telemetry schemes that insert extra bits into the packet.

In addition to this, we manually and carefully set the value
of the MTUs when evaluating PPTMon, while no additional
settings are made for the MTUs when evaluating vNetRadar,
demonstrating that vNetRadar is easy-to-deploy.

— ~ 3007 |
vNetRadar (64B) —+— vNetRadar (1514B) wn 8 /‘ o\° [ZZiperf3 (baseline) B iperf3 + PPTMon
) End Host = 110{—e— tcpdump (64B) —— tcpdump (1514B) = ; s ol = 250 iperf3 + vNetRadar [XXJiperf3 + tcpdump
@B Router 3 —#— PPTMon (648) —< PPTMon (15148) > 71 —#— tcpdump 5
§ 1001 petis s—o—o—2 % 61 —e— PPTMon T 200
N
= 0 Ss E 150
N g. 80 8 4 2
5 o >
<) 53 & 100
3 70 3 = 1
(G} o2 T 50 : [
60 € °
.. =1 = 0% ! DR AN AN
1 2 3 456 7 8 910 1 2 3 45 6 7 8 910 10 15 20
Path length N (hops) Path length N (hops) Throughput of Traffic (Gbps)
Fig. 6: The topology of the Fig. 7: vNetRadar has a low Fig. 8: vNetRadar introduces Fig. 9: vNetRadar is lightweight

bandwidth overhead, the 64B and
1514B represent the packet size.

testbed consists of 2 end hosts
and N routers.

2) Introduced Delay

vNetRadar processes packets on the data path and thus
introduces additional network delay. To evaluate the delay
introduced by the schemes on different path lengths N, we
set the path length NV from 1 to 10. Then we run ping -f on
h1 to flood 10* packets to h2 and get the RTT between hl
and h2. Since we only use the schemes to process packets in
one direction, by subtracting the average RTT with/without the
measurement scheme, we obtain the additional one-way delay
introduced. As the resolution of the RTTs get from ping -f is
just 1us, we repeat the above process 100 times to improve
the accuracy of the evaluation result.

As shown in Fig. 8, vNetRadar achieves a similar delay
performance to tcpdump which only performs copy operation
on the data path, and PPTMon has a better delay performance
since it has less BPF map I/O operations than vNetRadar. This
is negligible and acceptable because vNetRadar introduces
an average delay of only about lus per hop, which is an
extremely small value compared to the ms-level latency of
application traffic.

3) CPU Overhead

In this experiment, we evaluate the CPU overhead of the
schemes when measuring traffic with different throughputs.
We set N to be 1, then use iperf3® to send TCP traffic with
different throughputs from hl to h2. Since vNetRadar and
PPTMon run in the kernel and are event-driven, it is difficult
to measure their CPU overhead, we run iperf3 with/without
the measurement scheme to show the overhead. We get the
total CPU utilization in a minute by the psutil’ tool of Python,
which means the sum of the CPU utilization of all cores. We
repeat the above process 10 times.

As shown in Fig. 9, the CPU overhead introduced by vNe-
tRadar ranges from 8.3% to 14.7% for different throughputs,
which is much lower than tcpdump and PPTMon. This is be-
cause vNetRadar processes packets directly on the kernel data-
path, whereas tcpdump copies packets to the user space, which
introduces significant CPU overhead. Besides, PPTMon’s CPU
overhead is mainly due to submitting the packets’ latency
information from the kernel space to the user space upon each
packet arrives at the last measurement hop, we believe the CPU

6<iperf3,” https://iperf.fr/
7<psutil tool,” https://github.com/giampaolo/psutil

about 1 ps delay per hop, which in terms of CPU overhead.

is negligible.

overhead can be decreased if PPTMon changes the per-packet
submission operation to batch submission.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose vNetRadar, a virtual network
measurement system that simultaneously meets four require-
ments: fine-grained, lightweight, network-wide, and easy-to-
deploy. The core ideas of vNetRadar are the identification of
packets without growing their size and the storage of metadata
in backpacks in memory. Our evaluation results demonstrate
that vNetRadar can easily achieve a comprehensive view of
virtual networks with low overhead. Currently, vNetRadar only
supports the measurement of virtual networks on the same
server, and we will add support for multi-server based virtual
networks in the future.

REFERENCES

[1] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010, pp. 1-6.

[2] M. Scazzariello, L. Ariemma, and T. Caiazzi, “Kathard: A lightweight
network emulation system,” in NOMS, 2020, pp. 1-2.

[3] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: a survey,” IEEE
Internet of Things Journal, vol. 8, no. 18, pp. 13789-13804, 2021.

[4] J. Touch, “Updated specification of the IPv4 ID field,” Internet Engi-
neering Task Force (IETF), pp. 2070-1721, 2013.

[5] P. Emmerich, D. Raumer, S. Gallenmiiller, et al., “Throughput and
latency of virtual switching with open vswitch: A quantitative analysis,”
Journal of Network and Systems Management, vol. 26, no. 2, pp. 314-
338, 2018.

[6] Y. Cao, A. Jain, K. Sharma, et al., “When to use and when not to use
BBR: An empirical analysis and evaluation study,” in IMC, 2019, pp.
130-136.

[71 T. Mizrahi, G. Navon, G. Fioccola, et al., “AM-PM: Efficient network
telemetry using alternate marking,” IEEE Network, vol. 33, no. 4, pp.
155-161, 2019.

[8] C. Kim, A. Sivaraman, N. Katta, et al., “In-band network telemetry via
programmable dataplanes,” in ACM SIGCOMM, 2015.

[9] R. Ben Basat, S. Ramanathan, Y. Li, et al., “PINT: Probabilistic in-band

network telemetry,” in ACM SIGCOMM, 2020, pp. 662-680.

Y. Zhao, K. Yang, Z. Liu, et al., “LightGuardian: A Full-Visibility,

Lightweight, In-band Telemetry System Using Sketchlets,” in NSDI,

2021, pp. 991-1010.

T. Van, J.-H. Yoo, and J. Hong, “PPTMon: Real-Time and Fine-Grained

Packet Processing Time Monitoring in Virtual Network Functions,”

IEEE Transactions on Network and Service Management, vol.18, no.4,

pp. 4324-4336, 2021.

“tcpdump,” https://www.tcpdump.org/.

Y. Zhu, N. Kang, J. Cao, et al., “Packet-level telemetry in large

datacenter networks,” in ACM SIGCOMM, 2015, pp. 479-491.

M.AM Vieira, M.S. Castanho, R.D.G. Pacifico, et al., “Fast Packet

Processing with eBPF and XDP: Concepts, Code, Challenges, and

Applications,” ACM Computing Surveys, vol. 53, no. 1, pp.1-36, 2020.

[10]

(11]

[12]
[13]

[14]

